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a  b  s  t  r  a  c  t

The  two  leading  RP-HPLC  approaches  for  deriving  hydrophobicity  values  of  amino  acids  utilize either
sets  of designed  synthetic  peptides  or extended  random  datasets  often  extracted  from  proteomics  exper-
iments.  We  find  that  the  best  examples  of  these  two  methods  provide  virtually  identical  results  –  with
exception  of  Lys,  Arg,  and  His.  The  intrinsic  hydrophobicity  values  of  the  remaining  residues  as  determined
by  Kovacs  et  al.  (Biopolymers  84  (2006)  283)  correlates  with  an  R2-value  of  0.995+  against  amino  acid
retention  coefficients  from  our  Sequence  Specific  Retention  Calculator  model  (Anal.  Chem.  78  (2006)
7785).  This  novel  finding  lays  the  foundation  for establishing  consensus  amino  acids  hydrophobicity
scales  as  determined  by  RP-HPLC.  Simultaneously,  we  find  the assignment  of  hydrophobicity  values  for
charged  residues  (Lys,  Arg  and  His  at pH  2) is ambiguous;  their  retention  contribution  is  strongly  affected
by  the  overall  peptide  hydrophobicity.  The  unique  behavior  of  the  basic  residues  is  related  to  the  dualistic

character  of  the  RP  peptide  retention  mechanism,  where  both  hydrophobic  and  ion-pairing  interactions
are  involved.  We  envision  the  introduction  of  “sliding”  hydrophobicity  scales  for  charged  residues  as  a
new element  in  peptide  retention  prediction  models.  We  also  show  that  when  using  a  simple  additive
retention  prediction  model,  the  “correct”  coefficient  value  optimization  (0.98+  correlation  against  val-
ues determined  by  synthetic  peptide  approach)  requires  a  training  set of at least  100  randomly  selected

peptides.

. Introduction

Reversed phase HPLC of peptides has long been recognized as
 potent method to determine the hydrophobicity of amino acids
1,2], a crucial parameter in the studies of protein structure and
nteractions. The hydrophobic interactions in peptide RP separa-
ion closely mimic  the interaction of peptides and proteins with
ydrophobic substrates in biological systems. Some of these chro-
atographic studies were also directed at improving the prediction

f peptide retention in RP-HPLC systems, and have yielded a num-
er of hydrophobicity scales.

Recently Mant et al. [3] reviewed a large collection of RP-

PLC methods to define the hydrophobicity of amino acid side
hains. They concluded the hydrophobicities (retention coeffi-
ients) derived using designed synthetic peptides correlated poorly

∗ Corresponding author at: Manitoba Centre for Proteomics and Systems Biology,
99 JBRC, 715 McDermot Avenue, Winnipeg R3E 3P4, Canada. Tel.: +1 204 789 3283;
ax:  +1 204 480 1362.
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021-9673/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
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© 2011 Elsevier B.V. All rights reserved.

against values from models built using random peptide collec-
tions. A set of twenty synthetic peptides of the sequence motif
Ac-XGAKGAGVGL-Amide (where X is the target amino acid residue)
was  designed to eliminate any secondary structure and nearest-
neighbor effects on the intrinsic hydrophobicity of the substituted
residue in a random coil conformation [4].  These peptides were
separated under reversed-phase conditions and their observed
retention values were used to derive the intrinsic hydrophobicity
values of the residues. In a RP-HPLC approach based on the sepa-
ration of random peptide collections, retention coefficients values
are determined from the optimization of models that correlate
observed and predicted retention times. The phenomenological
difference between these two  methods is obvious: while for the
designed peptides the observed retention of a single compound is
used to determine hydrophobicity of each residue, random dataset
studies rely on multiple peptides containing the same amino acid
to extract its value. The designed peptide approach relies on the

elimination of all non-hydrophobic interactions through the careful
design of the sequence motif, while random peptide methods elim-
inate secondary structure effects through the “smoothing” effect of
larger datasets. Gilar et al. demonstrated one of the best examples

dx.doi.org/10.1016/j.chroma.2011.06.092
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:krokhino@cc.umanitoba.ca
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f the random peptide collection method recently, using a set of
65 tryptic peptides [5]. They showed optimizations of an additive
etention prediction model using retention data sets collected for
arious column temperatures, concentrations of ion-pairing agent,
nd types of sorbents, proving that this can reveal the differences
n retention coefficients responsible for altering separation selec-
ivity. Over the years we have developed a family of Sequence
pecific Retention Calculator (SSRCalc) models based on extensive
roteomics-derived datasets collected under various chromato-
raphic conditions [6–8]. Creating accurate retention prediction
odels was the major goal of these studies, but the values of the

etention coefficients we obtained were never the subject of in-
epth comparison against other hydrophobicity scales.

The examples of the random peptide collection approach cho-
en for comparison by Mant et al. [3] were published between
981 and 1995. Since then, advancements in mass spectrome-
ry and proteomics applications have renewed the interest in
eveloping RP-HPLC peptide retention prediction algorithms by
resenting researchers with systems to collect large, confident pep-
ide datasets. A number of peptide retention prediction models
ere developed in the past decade, providing significant advance-
ents in the field [5–13]. These yielded additional hydrophobicity

cales that also merit comparative analysis. In this report we seek
o bridge a gap between the two RP-HPLC methods for determin-
ng the intrinsic hydrophobicities of amino acid residues: the use of
esigned synthetic peptides and the use of random peptide dataset
erived from proteomics experiments.

. Materials and methods

.1. Retention coefficients (intrinsic hydrophobicity) values

All hydrophobicity scales were normalized using the approach
s described by Mant et al. [3] with the average of the retention
oefficients values scaled to 0.0 and the standard deviation to 1.0.
ppendix A shows the entire collection of retention coefficients
xtracted from the literature data in both raw format and as nor-
alized scales.

.2. Materials

Deionized (18 M�)  water and HPLC-grade acetonitrile were
sed for preparation of the eluents. Trifluoroacetic acid was sourced
rom Sigma–Aldrich (St. Louis, MO). Four peptides of designed
equences of motif Ac-XGAKGAGVGL-Amide (with His, Gly substi-
ution, identical to ones from [4])  and Ac-XGAKGAGLLL-Amide (with
is, Gly) were synthesized by JPT Peptide technologies GmbH

Berlin, Germany).

.3. Instrumentation and chromatographic conditions

RP-HPLC analysis used a micro-Agilent 1100 Series system (Agi-
ent Technologies, Wilmington, DE) with a UV detector operated at
14 nm and a manual injector (loop size 10 �l). All chromatographic
xperiments were conducted at room temperature (22–25 ◦C). Gra-
ient elution conditions were applied using an in-house packed
olumn (Luna C18(2) 100 Å, 5 �m pore size (Phenomenex, Torrance,
A), 100 mm  × 1 mm size) at a 150 �l/min flow rate. Binary solvent
ettings were used with both eluents A (water) and B (acetonitrile),
ontaining 0.1% trifluoroacetic acid (TFA) and gradient slope of 1%
cetonitrile per minute starting from 0% acetonitrile.
Stock solutions of peptides (∼1 mg/ml) were prepared by dis-
olving each peptide in 1 ml  of 0.1% TFA in water. Ten microliters
f the sample was injected following sample dilution with buffer A
o provide ∼0.5–1.0 �g of injection of each component.
r. A 1218 (2011) 6348– 6355 6349

2.4. Calculations and programming

The additive retention prediction model optimization was per-
formed using a ∼5000 peptide retention dataset originally used
in the development of our SSRCalc 100 Å TFA algorithm [7].  Sub-
sets of 20–1000 species were randomly selected from this data
set. These were used to optimize an additive retention prediction
model with a correction for peptide length: tR = (1 − a × Ln(N)) ×(∑

nRci

)
; where N, peptide length; Rci, retention coefficients for

individual amino acids; n, number of a particular residues in a
peptide sequence [5].  An automated multi-pass single parameter
optimization of the 20 Rci values and the coefficient a (follow-
ing our earlier approaches [6]) provided the best correlation tR

experimental vs. tR predicted, measured as Pearson’s correlation
coefficient.

This optimization was  performed five times for each size of the
data set, with fresh peptides being randomly selected for each exe-
cution cycle, and the resulting correlation values were averaged
across the five repetitions. Programs were written in Perl 5.8.8
and executed on an AMD  955-X4 (Advanced Microdevices, Sunny-
vale, CA) based workstation running Yellow Dog Enterprise Linux
(Fixstars, Tokyo, Japan).

3. Results and discussion

3.1. The choice of hydrophobicity scales for comparison

Table 1 and Appendix A show the hydrophobicity scales cho-
sen for comparison in this study. It includes seven different scales
for peptides in random coil conformation reported by Hodges
and co-workers using their synthetic peptide approach [4,14,15].
Kovacs et al. [4] designed synthetic peptides of common Ac-
XGAKGAGVGL-Amide composition where position X is substituted
with 20 naturally occurring amino acids (Ac-XG- as in Table 1).
It was suggested that RP-HPLC measurements for these peptides
provides the most realistic picture of intrinsic hydrophobicity of
amino-acid side chains due to the elimination of possible secondary
structure and nearest-neighbor effects. In addition to this data, we
choose to compare the retention coefficients for C-terminal substi-
tutions with free carboxy (-GX-OH) and amide groups (-GX-Amide),
N-terminal substitution with free amino group (NH3-XG-) and the
internal substitution within the 11 mer  peptides (-GXG-) [14]. We
also considered the data presented by the same group in 1986 (Guo
et al. [15]), which featured the same TFA-based eluent system and
wide pore (300 Å) sorbent.

Comparison of hydrophobicity coefficients obtained by Meek
[2], Meek and Rossetti [16], Browne et al. [17] and Wilce et al. [18]
with intrinsic hydrophobicities by Kovacs et al. [4] was  reported
recently showing generally poor correlations [3].  In our compar-
ative study we tried to include all hydrophobicity scales derived
from RP-HPLC retention prediction studies in the past 8 years
(Table 1). Most of them used acidic pH eluents (formic acid and
TFA). Baczek et al. [11] used the measured RP retention values of
individual amino acids as a component of their QSSR model. It was
shown, however, that the properties of amino acids differ signifi-
cantly when they are linked through peptide bonds [3].  In case of
the “kernel function with support vector machine” based optimiza-
tion the retention coefficients were not reported [12]. Both of these
models used less than 100 peptides for optimization, making their
results difficult to evaluate, as discussed in the following sections.
Klammer et al. [13] reported support vector regression optimiza-

tion using 12 different datasets of 150–2384 peptides. Scales by
Petritis et al. [9] and Shinoda et al. [10] were obtained using an arti-
ficial neural network optimization with ∼7000 and 834 peptides,
respectively.
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Table 1
Cross correlations between hydrophobicity (retention coefficients) values for different models.

Model Correlation values for 15 residue/20 residue sets

Ac-XG-a [4] SSRCalc 100 Å TFA [7] SSRCalc 300 Å TFA [7] SSRCalc 100 Å FA [8]

Designed synthetic peptides models
-GX-OH (100 Å TFA) [14] 0.990/0.985 0.983/0.936 0.992/0.965 0.989/0.891
-GX-Amide (100 Å TFA) [14] 0.999/0.988 0.993/0.942 0.994/0.967 0.994/0.886
Ac-XG-  (100 Å TFA)a [4] 1/1 0.996/0.939 0.996/0.963 0.995/0.884
NH2-XG- (100 Å TFA) [14] 0.976/0.983 0.976/0.909 0.961/0.928 0.963/0.832
-GXG-  (100 Å  TFA) [14] 0.993/0.969 0.994/0.971 0.995/0.978 0.993/0.942
Guo  et al. (300 Å TFA) [15] 0.963/0.920 0.957/0.952 0.974/0.958 0.971/0.952

Random peptide dataset models (regression analysis)
SSRCalc 300 Å TFA [7] 0.996/0.963 0.997/0.992 1/1 0.997/0.960
SSRCalc 100 Å TFA [7] 0.996/0.939 1/1 0.997/0.992 0.996/0.983
SSRCalc 2004 300 Å TFA [6] 0.983/0.941 0.979/0.961 0.991/0.983 0.985/0.920
SSRCalc 100 Å FA [8] 0.995/0.884 0.996/0.983 0.997/0.960 1/1
Gilar  (100 Å TFA) [5] 0.988/0.974 0.985/0.986 0.986/0.982 0.985/0.927
Gilar  (100 Å FA) [5] 0.989/0.883 0.986/0.971 0.984/0.945 0.986/0.988

Random peptide dataset models (support vector regression analysis)
Klammer et al. (100 Å FA) [13] 0.935/0.752 0.940/0.898 0.955/0.864 0.944/0.943

Random peptide dataset models (analytical neural network)
Petritis et al. (100 Å  TFA–FA) [9] 0.646/0.677 0.653/0.700 0.683/0.729 0.677/0.695
Shinoda et al. (100 Å FA) [10] 0.806/0.686 0.795/0.764 0.827/0.747 0.823/0.827

Correlations are shown for 15 (no Cys, Pro, Arg, Lys, His) and all 20 residues.
-GX-OH – from Tripet et al. [14]; NH2-GAGAGVGLGX-OH, C18 100 Å, TFA based eluent.
-GX-Amide – from Tripet et al. [14]; NH2-GAGAGVGLGX-Amide, C18 100 Å, TFA.

a Ac-XG- – from Kovacs et al. [4]; Ac-XGAKGAGVGL-Amide, C18 100 Å, TFA; intrinsic hydrophobicity scale.
NH2-XG- – from Tripet et al. [14]; NH2-XGAKGAGVGL-Amide, C18 100 Å, TFA.
-GXG- – from Tripet et al. [14]; LGLGXGLGLGK, C18 100 Å, TFA.
Guo et al. [15]; Ac-GXXLLLKK-Amide; C18 300 Å, TFA.
SSRCalc 300 Å TFA – from Krokhin [7]; ∼4000 random tryptic peptides, C18 300 Å, TFA.
SSRCalc 100 Å TFA – from Krokhin [7]; ∼5000 random tryptic peptides, C18 100 Å, TFA.
SSRCalc 2004 300 Å TFA – from Krokhin et al. [6]; 346 random tryptic peptides, C18 300 Å, TFA.
SSRCalc 100 Å FA – from Dwivedi et al. [8]; ∼4000 random tryptic peptides, C18 100 Å, formic acid.
Gilar  (100 Å TFA) – from Gilar et al. [5]; 165 random tryptic peptides, C18 100 Å, TFA.
Gilar  (100 Å FA) – from Gilar et al. [5]; 165 random tryptic peptides, C18 100 Å, formic acid.
Klammer et al. (100 Å FA) – from Klammer et al. [13]; 2080 random tryptic peptides, C18 100 Å, formic acid.
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etritis et al. (100 Å TFA–FA) – from Petritis et al. [9];  ∼7000 random tryptic peptid
hinoda et al. (100 Å FA) – from Shinoda et al. [10]; 834 random Lys-C peptides, C18

Retention coefficients reported by Gilar et al. [5] and Krokhin
7] were obtained using more traditional optimization approaches
ith linear regression analysis on 165 and ∼4000–5000 peptide
atasets, respectively. The unique feature of the latter was  the

ntroduction of a number of sequence specific corrections to take
nto account nearest neighbor and helicity effects.

Hydrophobicity/hydropathy scales determined by classical
ethods such as the accessible surface area approach show very

oor correlation with RP-HPLC derived scales (below 0.5 R2-value,
ppendix A). The whole residue scales determined by Wimley et al.

19] for water–octanol interface showed the closest match (a cor-
elation of 0.72) with the Kovacs et al. [4] values.

.2. Consensus rules for RP-HPLC hydrophobicity scales

In their review, Mant et al. [3] outlined general requirements
or hydrophobicity scales obtained by a RP-HPLC experiment on
18 sorbents for peptides in random coil conformation. Most of
hese rules are based on a general knowledge of the structures of
mino acids, and can be used for rapid assessment of a particular
cale. For example, the hydrophobicity/retention coefficients for
18 sorbents should increase as follows: (i) Gly < Ala < Val < Ile < Leu
nd (ii) Asp < Glu; Asn < Gln; Ser < Thr. If any of these criteria
re not met  then the hydrophobicity scale, its underlying data
r analysis methods required some additional evaluation. The

ydrophobicity scales in Appendix A indicate that the artificial neu-
al approaches are “multiple violators” of these rules. However,
hese models are still included in the detailed comparison provided
n Table 1.
 100 Å, formic acid–TFA mixture.
˚ , formic acid.

3.3. Detailed comparison of hydrophobicity scales: unique role of
charged residues and proline. “Goodness” of the fit

Plotting retention coefficients of the models against each other,
as in Fig. 1, can provide a detailed comparison of hydrophobicity
scales. We  selected our SSRCalc 100 Å TFA model as the most accu-
rate retention predictor for the comparison with hydrophobicity
scales generated by the synthetic peptides approach (Fig. 1A and
C), as most of them employ the same separation conditions – C18
100 Å columns with TFA based eluents [4,14].  Fig. 1A shows correla-
tion of normalized intrinsic hydrophobicities and SSRCalc retention
coefficients. An R2-value correlation of 0.939 was found for all 20
residues. This plot allows us to easily spot correlation outliers: Cys,
Pro, Arg, His, and Lys.

3.3.1. Cysteine
The Cys residue in our studies was  always alkylated with iodoac-

etamide (a common proteomics practice), in contrast to the free
Cys group in the designed peptide approach used by Hodges and
co-workers. Not surprisingly, the hydrophobicity values obtained
were significantly different. Note that comparison of SSRCalc scales
with Gilar et al.’s [5] values show very similar results for Cys as a
result of their identical alkylation chemistry (Fig. 1G and H).

3.3.2. Proline

The intrinsic hydrophobicity for Pro as determined by Kovacs

et al. [4] was found to be larger than its retention coefficient in
SSRCalc (Fig. 1A and B). We  believe the Pro residue’s unique struc-
ture of an �-amino group as a part of side chain is responsible for
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ig. 1. Correlation between normalized hydrophobicity scales determined by differ
nd  His) and all 20 residues (e.g. 0.996/0.977). For the assignment of the scales, ple

his, making Pro a very rigid residue. We  postulate this makes it
ifficult to access the hydrophobic/hydrophilic properties of Pro.
e do agree that the intrinsic hydrophobicity/hydrophilicity val-

es of Pro as determined for Ac-XGAKGAGVGL-Amide substituted
eries of peptides correctly represents the properties of the residue
ithin these specific peptides, but overall the impact of Pro on the
ydrophobicity of a peptide/protein is different when it is posi-
ioned inside the sequence. When the designed peptide approach
ata set was constrained to only the LGLGXGLGLGK species, the
ydrophobic contribution of Pro was found to be nearly identical
o that from the SSRCalc model (Fig. 1C).

.3.3. Arg-His-Lys
The intrinsic hydrophobicity values of the charged residues Arg,

is and Lys vary greatly across the Kovacs et al. [4] and SSRCalc
00 Å TFA models [7] (Fig. 1A): these residues are more hydropho-
ic in the designed peptide approach. Kovacs’s coefficients obtained

or the more hydrophilic phosphate counter-ion show a much
etter correlation with SSRCalc TFA values (Fig. 1B). But it is com-
on  knowledge that the hydrophobicity of charged residues is

ffected by hydrophobicity of its counter-ions: Arg, Lys, and His
proaches. R2-value correlations are shown for both 15 (excluding Cys, Pro, Arg, Lys,
fer to Table 1 and Appendix A.

are more hydrophilic in a phosphate buffer system at the same
pH. Tripet et al. [14] also noticed that Arg, His and Lys become
more hydrophobic at the terminal positions as compared to the
internal locations by comparing values of the LGLGXGLGLGK and
Ac-XGAKGAGVGL-Amide series. This results in slightly better cor-
relation when SSRCalc 100 Å TFA is compared to -GXG- set of
peptides (Fig. 1C).

A detailed explanation of the observed discrepancies and the
unique role of charged residues is given in the following sec-
tions. However, for the purpose of comparing hydrophobicity scales
derived by RP-HPLC we propose to simply exclude Pro, Cys, Arg, His
and Lys from consideration. Positional constraints for (Pro) and the
alkylation status (Cys) can be applied as a filter for inclusion of
these residues into consideration, while the pH 2 determination of
hydrophobicity (Arg, His, and Lys) is ambiguous.

Comparison of retention coefficients (intrinsic hydrophobicity)
values between the best designed synthetic peptides [4] and ran-

dom peptide data sets [7] methods shows that there is virtually
no difference between the scales obtained using these different
approaches. All SSRCalc models (independent of pore size of the
sorbent or ion-pairing modifier (TFA or FA)) demonstrate a 0.995+
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2-value correlation against the intrinsic hydrophobicities for 15
esidues obtained using the Ac-XGAKGAGVGL-Amide series of pep-
ides (Fig. 1A and Table 1). This high degree of similarity permits
he creation of consensus hydrophobicity scales determined using

 RP-HPLC approach.
Based on these findings we suggest new criteria for determining

goodness of fit” of different hydrophobicity scales derived from
18 100 Å sorbents:

1) As discussed, the expected order for retention should be
observed: Gly < Ala < Val < Ile < Leu; Asp < Glu, Asn < Gln and
Ser < Thr. We  suggest that additionally Trp be the most
hydrophobic residue, followed by Phe, as in Mant et al. [3].
However, some discrepancies were observed; in the results
reported by Guo et al. [15] the coefficients for Leu and
Phe were equal. Hydrophobicity values for the Val-Tyr-Met
triad were found very close in most of the scales (espe-
cially for Val-Tyr). However agreement between the Kovacs
et al. [4] and SSRClac scales [7] indicate that the order
should be Val ≤ Tyr < Met, yielding a hydrophobicity order of:
Gly < Ala < (Val ≤ Tyr) < Met  < Ile < Leu < Phe < Trp.

2) We  feel that a more stringent criteria than the R2-value of
0.9–0.95 in Mant et al. [3] should be used. If correlation between
hydrophobicity values is below 0.98 the datasets or underlying
mathematics behind coefficient derivation should be examined.

.4. Comparison of random peptide dataset RP-HPLC approach
ith intrinsic hydrophobicity scales determined by Kovacs et al.

4]

As we noted before, poor correlations were found between the
ovacs et al. [4] scales and all examples of RP-HPLC on a random
atasets selected by Mant et al. for comparison [3].  In our opinion,
ost of the discrepancies observed were due to the limited num-

er of peptides (25–100) used in these earlier studies [2,16,17]. We
llustrate in subsequent sections that these are insufficient numbers
or the proper evaluation of retention coefficients using regres-
ion analysis. However, the data set reported by Wilce et al. [18]
ontained 1738 entries but gave the poorest correlation (0.847 R2-
alue) [3] with intrinsic hydrophobicity values. It was noted that
rp and Met  were the most “notorious” outliers in the Wilce et al.’s
tudies, but no explicit explanation was given [3].  We  postulate that
he low observed hydrophobicity values for Trp and Met  were likely
aused by their oxidation, again illustrating the power of mass spec-
rometry when used intelligently by chromatographers: had these
eptides being filtered through MS  detection these incorrect pep-
ide retention values would have been excluded from the Wilce
t al. [18] datasets.

In considering hydrophobicity scales derived in the proteomics
ra, one feature becomes obvious: the application of advanced
ptimization techniques such as artificial neural networks [9,10]
rovides the poorest correlations (Table 1). It is difficult to isolate
he mechanism behind such deviations as the quality of retention
atasets was probably good based on the level of experience in the
espective groups. Support vector regression analysis produced an
ntermediate quality of correlation of ∼0.94–0.95, but with a num-
er of violations of the consensus hydrophobicity rules (Appendix
). Note that in Table 1 from the Klammer et al. data [13], we used
nly the best results obtained with standard digestion/separation
rotocols (trypsin/formic acid conditions with 60 cm column) for a
raining set of 2080 peptides. Overall, the authors used 12 differ-

nt datasets to derive hydrophobicity contributions of individual
mino acids, including results obtained using the MudPit approach
nd utilizing different enzymes. The introduction of an additional
eparation phase with a high salt eluent component in MudPit
r. A 1218 (2011) 6348– 6355

lowers the correlations. The same was  observed for elastase and
chymotrypsin datasets, but in these cases a dataset with a low
number of peptides (150) was used [13].

Gilar et al. [5] applied a linear regression analysis using a clas-
sical additive retention prediction approach with a correction for
the peptide length, against a dataset of 165 peptides. Retention
coefficients were optimized for formic acid and TFA as ion-pairing
modifiers and across different column temperatures. We  find the
reported retention coefficients correlate to 0.984+ against both
the intrinsic hydrophobicities of Kovacs et al. [4] and SSRCalc [7]
(Table 1 and Fig. 1G and H). Another distinctive difference observed
in Gilar’s scale is variation in Val-Tyr-Met triad: Met  < Val < Tyr was
typical.

The best correlations (>0.995) were seen between the intrinsic
hydrophobicity values reported by Kovacs et al. [4] and those from
the SSRCalc models. The latter were optimized using 4000–5000
peptide data sets, and attempted to take into account sequence
dependent features of peptide retention. Nearest neighbor effects
and the stabilization of amphipathic helical structures were sug-
gested as a major reasons for the inability of the random peptide
approach to reproduce hydrophobicity scales obtained by the
designed peptide approach [3];  SSRCalc attempts to account for
these effects. We  suggested that ion-pairing formation, which
involves charged residues, affects the apparent hydrophobicity
of neighboring residues [6,7]. We  also correct peptide retention
based on the presence of amphipathic helical stretches of motifs
such as XXOOXX and XXOXX, where X corresponds to hydropho-
bic residues and O to any other residues. These corrections were
introduced based on empirical rules and improved the SSRCalc pre-
diction accuracy [7].  As we  show here, these corrections facilitated
a more accurate assignment of retention coefficients by partially
limiting these effects. The difference between 0.984+ and 0.995+
correlations for Gilar et al.’s [5] and SSRCalc [7] in Table 1 rein-
forces the value of introducing of sequence specific features, and
the use of larger peptide datasets.

3.5. Sensitivity of retention coefficients method towards variation
of pore size and ion-pairing modifier

Peptide’s retention is very sensitive to the variation of sorbent’s
chemistry, the type of ion pairing agent, the temperature of the
column, and the pore size of the sorbent. The influence of polar
end-capping on separation selectivity was demonstrated by ran-
dom peptide sets [20] and by designed peptide’s approaches [21].
Gilar et al. [5] evaluated the effect of column temperature on reten-
tion coefficients using their collection of 165 peptides. In our study
we considered it worthwhile to investigate if variations in pore size
and the type of ion pairing modifier reflect in amino acid hydropho-
bicity values across the different models. For example, the Guo et al.
[15] model was created for the series of designed peptides sep-
arated on C18 300 Å sorbent with TFA based eluent (Fig. 1D–F).
Not surprisingly its 15 retention coefficients correlates best with
SSRCalc 300 Å TFA (R2 = 0.974, Fig. 1F), as well as the original SSR-
Calc reported in 2004 [6] also for 300 Å TFA (R2 = 0.986, results not
shown). As shown in Fig. 1G and H, the Gilar et al. [5] 100 Å FA
model correlates much better with SSRCalc 100 Å FA (R2 = 0.988,
for all 20 residues), compared to SSRCalc 100 Å TFA (R2 = 0.971).
Comparison of retention coefficients with and without the basic
residues included is also a good indication of the identity of the
ion-pairing modifiers between two  models. Thus for Gilar (100 Å
FA)–SSRCalc (100 Å FA) pair correlation was 0.986 and 0.988 for 15
and all 20 residues, respectively (Fig. 1H). In case of the Gilar (100 Å

FA)–SSRCalc (100 Å  TFA) pair shown in Fig. 1G, correlations were
0.986 and 0.971: the inclusion of charged residues into considera-
tion results in a lowered correlation for non-identical ion-pairing
chemistries. Similar comparison allows to assign Klammer et al.’s
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13] and Shinoda et al.’s [10] models being conducted using formic
cid based eluents even without knowing their experimental con-
itions. As shown in Table 1 when comparing to SSRCalc (100 Å  FA)
heir correlations are identical in both 15- and 20-residue plots.

.6. Intrinsic hydrophobicity of charged residues

All charged residues in a peptide sequence are involved in ion
airing interactions under RP-HPLC conditions. It has been shown
n multiple occasions that variation in the ion-pairing chemistry
nder pH 2 conditions results in the alteration of hydrophilicity
alues for Arg, His, and Lys [22,23]. Leaving aside these effects, we
ntended to pursue the more complicated question: why  are the
ydrophobicity values for charged residues inconsistent even when
sing identical sorbent and ion pairing chemistry?

As an example, the hydrophobicity values for Lys, His and
rg reported in the Kovacs et al. TFA [4] scale were found to
e higher than those in Guo et al. [15] (Fig. 1D). Tripet et al.
14] noted the same – their series LGLGXGLGLGK exhibited much
igher hydrophilicity of Lys, His, and Arg compared to the Ac-
GAKGAGVGL-Amide in Kovacs et al. [4] as well as all other models
ith N- or C-terminal as the position of substitution [3].  It was

uggested that charged residues are more hydrophobic in the N-
erminal position than when they are internal. Analyzing 5 sets
f designed synthetic peptides ([3,14],  shown in the captions for
able 1) one can conclude that the sequence for the -GXG- series is
he most hydrophobic among them (contains 4 Leu). The same is
rue for Guo et al. [15] peptides also exhibiting more hydrophilic
haracter for Lys, His, Arg: 3 Leu in a framework sequence. These
nitial observations suggested that the hydrophobicity of basic
mino acids could be determined not by position, but rather overall
ydrophobicity of the peptide.

To test this hypothesis we synthesized a series of peptides,
wo of which were identical to ones reported by Kovacs et al. Ac-
GAKGAGVGL-Amide (X = Gly, His) and two were the same length
nd composition, but with the last 3 residues being Leu: Ac-
GAKGAGLLL-Amide with Gly and His in N-terminal position. Fig. 2
hows separation of these two pairs under 100 Å C18 conditions

ith 1% acetonitrile per minute gradient (TFA based eluent sys-

em). Confirming the previous findings [4],  the substitution of
ly with basic His does not change the retention of a peptide

n the Ac-XGAKGAGVGL-Amide framework. Ac-GGAKGAGLLL-Amide
by  one extra Arg residue were used to generate this plot (e.g. TPIAVR–RTPIAVR,
ANVMDYR–RANVMDYR).

and Ac-HGAKGAGLLL-Amide have the latter series length and posi-
tion of substituted residue, but exhibit a substantial decrease in
retention: �tR = −1 min following the Gly-His substitution. These
findings suggest that the hydrophobicity/hydrophilicity of charged
residues is determined by the overall peptide hydrophobicity
rather than by its position in the peptide.

It is known that the contribution of a particular amino acid in
peptide retention depends on the overall size of a peptide: the
larger peptide, the smaller the contribution. Thus Mant et al. [24]
introduced a correction factor related to a peptide length. It is
also known that peptide length correlates with its hydrophobic-
ity for the random peptide data sets: the longer the sequence,
more hydrophobic the peptide is expected to be. These two  rela-
tions make it difficult to determine which property of a peptide
– length, or hydrophobicity, is the dominant factor behind devi-
ations under additive models. These deviations are responsible
for the concave character of tR vs. hydrophobicity plots, which
require correction for peptide length [5,24] or both length and
hydrophobicity [6,7]. However, independent of peptide size or
hydrophobicity, the substitution of Gly for more hydrophobic
residues (Ala < (Val ≤ Tyr) < Met  < Ile < Leu < Phe < Trp) will always
result in higher retention of peptide in random coil conformation.
This increase will be smaller for longer, more hydrophobic peptides.

The same scaling rules will not be applicable to charged residues.
The contribution of the charged residues compared to Gly in TFA-
based eluents can be positive (Lys, Arg [4]), near zero (His [4],
Fig. 2) or negative, as shown for Ac-GGAKGAGLLL-Amide and Ac-
HGAKGAGLLL-Amide in Fig. 2 as well as for LGLGXGLGLGK [14] and
Ac-GXXLLLKK-Amide [15] series.

SSRCalc uses different sets of retention coefficients for short
(N < 9) and long peptides [7].  The rationale behind these corrections
was  developed empirically; the resulting hydrophobicity values
were never compared to the other scales. Fig. 1I shows such a com-
parison across SSRCalc 100 Å TFA retention coefficients between
short and long peptides. Confirming the previous finding from the
designed peptide approach, charged residues were found to be
more hydrophobic for short (relatively hydrophilic) peptides.

We found additional proof of variability of charged residue’s
retention contribution upon variation of peptide hydrophobicity

when studied changes in chromatographic behavior caused by the
N and C-terminal additions of Lys and Arg. A typical tryptic digest
often contains peptides with missed cleavages when the protein
sequence features two  or more adjacent cleavage sites: -RR-, -KK-,
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RK-, -KR-, etc. In this case, the missed cleavage results in the
ppearance of two or more related species differing by one extra
harged residue (for example: HPDYSVVLLLR and RHPDYSVVLLLR
rom human albumin). Fig. 3 shows how the retention time of a
eptide changes upon N-terminal addition of Arg depending on
eptide hydrophobicity. The observed trend is similar to the pro-
ess discussed in this section: peptide retention can both increase
nd decrease, depending on the hydrophobicity of parent molecule.

Collectively, this data shows that the correct assignment of
ydrophobicity of charged residues is crucial for building accurate
etention prediction models. We  envision the introduction of “slid-
ng” hydrophobicity scales, where retention contribution of the
harged residues will vary depending on peptide hydrophobicity
nd/or size. The same will apply to Asp and Glu at neutral and
asic pHs. Therefore the specific determination of hydrophobic-

ty/hydrophilicity of charged residues requires taking into account
he overall hydrophobicity (size) of a peptide. Such a drastic dif-
erence in behavior of neutral and charged amino acids arises from
ualistic (hydrophobic and ion-pairing) mechanism of peptide RP-
PLC retention. We  think that the contribution of the ion-pairing
echanism varies with the concentration of the organic solvent

equired for a peptide elution, which in-turn correlates with the
ydrophobicity (and indirectly with the length) of the peptides.

.7. Determining retention coefficients using a random peptide
ollection: dataset size requirements

Throughout the manuscript we have noted the disadvantage of a
andom peptide dataset approach when low number of the species
25–100) is used. It was of interest to explore how many peptides
re required for “correct” (0.98+ correlation against values from the
esigned series method) assignment of the retention coefficients.
e randomly selected various numbers of peptides (20–1000)

rom a total of ∼5000 peptides originally used in optimizing the
SRCalc 100 Å TFA model, then performed linear regression opti-
izations for these subsets. The selection of random peptides and

ptimization was repeated five times for each subset size and the
esults were averaged. Fig. 4 shows the average values of retention

oefficients correlating against SSRCalc’s retention hydrophobicity
alues (for 17 residues), as well as the average accuracy of the addi-
ive prediction models (R2-value of tR vs. hydrophobicity plots). The
ize of peptide datasets corresponding to Meek [2],  Gilar et al. [5]
tion times) and (2) assignment of the retention coefficients (R2-value against the
orted value is the average across 5 optimization runs, with new randomly selected

and Krokhin et al. [6] are indicated on this plot: 25, 165 and 364
species, respectively. This figure provides an excellent illustration
that a set of 25 peptides can provide near-perfect 0.99+ accuracy
for an additive retention prediction model. But this result is due to
an almost complete overfitting of the model against the training
data, and these retention coefficients show a very poor correlation
(∼0.7 R2) against the consensus hydrophobicity values. This also
demonstrates that a simple additive retention prediction model
involving a correction for the peptide length alone cannot yield
retention prediction accuracy above 0.945 for randomly selected
peptides.

4. Conclusions

Determination of the intrinsic hydrophobicity of amino acids
in a random coil conformation using the RP-HPLC of designed
synthetic peptides or extended random peptide collections both
produce virtually identical results (0.995+ R2 correlations). This
degree of agreement between these two alternative methods
is a novel finding. The availability of high quality proteomics-
derived data has allowed us to independently confirm findings of
Hodges and co-workers, thus laying foundation for assigning con-
sensus hydrophobicity scales derived from RP-HPLC experiments.
The accurate assignment of hydrophobicity values by the SSR-
Calc model was possible due to taking into account such sequence
specific features as nearest neighbor effects and the influence of
amphipathic helixes formation. Overall peptide retention is deter-
mined by amino acid composition. While the influence of secondary
structure formation and ion-pairing (affects nearest neighbor’s
interaction) causes deviations from predicted retention, it’s also
complicates determination of intrinsic hydrophobic/hydrophilic
contribution of the residues. A very close match between reten-
tion coefficients determined during our model’s optimization and
designed peptide approach indicates correctness of our approach
to describing these phenomena. The hydrophobic contribution of
the residues present in the other conformations (such as amphi-
pathic helix) undoubtedly will be different from ones reported here.
Precise determination of these contributions will require detailed

studies comprising best practices of random peptide dataset and
designed peptide approaches.

The repetitive regression optimization of a simple length-
corrected additive retention prediction model using various sizes
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f dataset illustrates that at least 100 random peptides are required
or a 0.98+ R2 of amino acid intrinsic hydrophobicity values
gainst those found using the designed peptide approach. The
xcellent agreement in amino acid intrinsic hydrophobicity val-
es derived from the alternative approaches has also allowed
s to precisely assign and explain the observed differences. We
how that determining hydrophobicity of charged residues is
trongly affected not only by the type and concentration of ion-
airing modifier, but also but by peptide’s hydrophobicity. We
ttribute differences in values for the basic residues to the influ-
nce of ion pairing formation during RP-HPLC separation. In our
pinion, defining hydrophobicity/hydrophilicity of these residues
s only possible for the particular hydrophobicity of a frame-

ork peptide (for designed set approach), or using the average
ydrophobicity of the species from particular random peptide col-

ection.
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